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SUMMARY

An algorithm and a program for the determination of the minimal size of experiments
to compare levels of a fixed factor for balanced classifications in the analysis of variance
is described and demonstrated. The minimal size is determined in dependence on a
lower bound for the difference between the maximum and the minimum of the effects
to be tested for equality by an F-test, on the risks of the test and on a presumable
value of the common residual variance. We determine the minimal size for the least
favorable case (the maxi-min size) as well as for the most favorable case (the mini-min
size). The classification and the model chosen influence the degrees of freedom for the
F-test and the relationship between the size of the experiment and the non-centrality
parameter.

KEY WORDS: analysis of variance, minimal size, non-centrality parameter, sub-class
number.

1. Introduction

Let us assume that an experimenter decided that his experimental question leads to
an F-test in an ANOVA model with error variance 2. After fixing the number of
factors, their properties (fixed or random) and the type of their combination (crossed
or nested) he usually has to answer the question ”What is a suitable subclass number
n?”. To answer this question, knowledge of the error variance o2 is required, although
the experiment has not yet been performed. From a previous work on this or from

*The paper was submitted on the occasion of 70-th birthday of Professor Tadeusz Caliniski.
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the literature, the experimenter guesses a value of o2. He also must state how precise
the F-test should be. He thus has to fix the significance level and the minimal value
1 — 3 of the power function if the maximum difference between effects to be tested
for equality equals d. We assume that at least one of the factors is fixed which means
that we have either

— a model I of ANOVA (all factors are fixed)

— or a mixed model.

The procedures are demonstrated for some examples with up to three factors in
total.

2. Size of an experiment for the F-test in ANOVA models

The problem of the determination of the size of an experiment for the analysis of

variance has amongst others been investigated by Tang (1938), Thompson (1941),

Lehmer (1944), Pearson and Hartley (1951, 1972), Fox (1956), Tiku (1967, 1962),

Das Gupta (1968), Bratcher et al. (1970), Kastenbaum et al. (1970a, b), Bowman

(1972, 1975), Rasch et al. (1996b), Herrendorfer et al. (1997) and Rasch (1998).
The solution of the following equation plays a crucial role:

F(f17f270’1'—a)=F(f1)f2,)\a/8)a (1)

where F(f1, f2,0,1 — ) is the (1 — a)-quantile of the (central) F-distribution with
degrees of freedom f; and f; and non-centrality parameter 0 and where F(f1, f2, A, )
is the # quantile of the F-distribution with degrees of freedom f; and f; and non-
centrality parameter A\. Below we determine the minimum size of an experiment for
testing a special group of effects (main effects, interaction effects) for equality for the
least favourable case which we refer to maxi-min size and for the most favourable case
that hereafter we refer to mini-min size.

Let Emnin be the minimum and Ep.. be the maximum of a set of ¢ effects
Es, ..., Eq. The risk of the first kind for the F-test of the null hypothesis Hy: E; =
E, = ... = E; is fixed by a and the power function must have at least the value
1- B if Epax — Emin 2> d, with d as part of our precision requirements. The non-
centrality parameter depends not only on Ep . and Ey, but also on all other E;. If
Emax — Emin > d the non-centrality parameter w) .+, (E; — E)?/o? satisfies

w Z(E'1 — E)?/0? > w(Emax — Emin)?/(20%) > wd?/(20?). (2)

i=1

The least favorable case (leading to the minimal non-centrality parameter and the
maxi-min size) is the case when the g — 2 remaining E; are equal to (Emax + Emin)/2.
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The most favorable case leading to the mini-min size for even ¢ = 2m is given if m
of the E; are equal to E;, and the other m of the E; are equal to Fyay. For odd
q = 2m+ 1, where m is a positive integer, the most favorable case is again given if m
of the E; are equal to Ep,;,, another m of the E; are equal to Ey,x and the remaining
E; equals to either Ej, or En.x. Our objective is to determine the minimal size
N = v - w of the experiment in such a way that a given number w depending on the

classification satisfies
2

wd > o(a, B, fr, f2), 3)

202 ~
where g is the solution A of (2). The values of w are shown in Table 1.
Below we demonstrate, for even g = 2m, the least and most favorable case and
the inequality

g
= 1
Z(Ez - E)2 2 Q(Emax - -Emin)2 (4)
i=1
derived from (2). Without loss of generality we assume that

E; =0, E<E<..Z Eq; Enin = _E’ and Enax = E.

=1

For the most favorable case (as shown in the following figure), we have

q
E=0, ) (B -E)y?=qE"
i=1

| | |
I | |

Ey=Ey=..=E,=-E 0 Emi1=FEmya=..=E,=E

For the least favorable case (as shown in the next figure), we have
q
E=0, ) (Ei-E)*=2E

i=1

| | |
| | I

Ey =-E 0=Ey=..=E, 4 E,=E

In both cases (Emax — Fmin)? = 4E?, and inequality (4) holds. Equality is true only
in the least favorable case as expected.

We denote factors by A,B and C and their effects by o; (i = 1,2,...,a), 8; (j =
1,2,...,b) and v, (k = 1,...,¢), respectively (for the cross classification). We assume
that at least one of the factors has fixed effects.
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The following notation is used. If two factors A and B are cross classified, we
write A x B. If B is nested in A we write A > B. Random factors are underlined. For
instance, (A >~ B) x C denotes a mixed classification for which B is nested within A
and the whole combination of A and B is crossed with C. Here A and B are random
and C is fixed.

Table 1 shows examples for some classifications and the value w determining the
size of the experiment.

Table 1. Parameters w, f; and f> for some of the classifications in ANOVA models
for testing Hy: By = Ey =... = Ey; k denotes the block size in BIB and PBIB designs.

Classification Effects w h fe
Fixed Random

One way classification A n a-—1 a(n—1)

Two way cross AxB A B n a-1 ab(n — 1)
BIB, PBIB (Two way cross ) A, B b a-1 bk—a—-b+1
Two-way cross AxB A B b a-1 (a-1)(b-1)
Two-way nested A-B A'B n a-1 ab(n — 1)
Two-way nested A>B A B b a-1 a(b—1)
Two-way nested A~B B A n alb—1) ab(n-1)
Three-way cross AxBxC A B, C n a-1 abc(n — 1)
Three-way cross AxBxC AB C ¢ a-—1 (a—1)(c—1)
Three-way nested A~B-~C A, B, C n a-1 abc(n — 1)
Three-way nested A-B>~C A B, C b a-1 a(b-1)
Three-way nested A~B~C B A C c a(b—1) ablc—1)
Three-way nested A~B~C C AB n ab(c—1) abc(n—1)
Three-way nested A-B~C A, B C c a-1 ab(c—1)
Three-way nested A~B>~C A, C B b a-1 a(b—1)
Three-way nested A~B>~C B, C A n a(b—1) abe(n—1)
Three-way mixed (AxB)>~C A, B, C n a-1 abe(n — 1)
Three-way mixed (AxB)~C A, C B b a-1 (a—1)(-1)
Three-way mixed (AxB)>C A, B C c a-1 ab(c — 1)
Three-way mixed (AxB)~C A B,C b a-1 (a-1)(-1)
Three-way mixed (A~B)xC A, B, C n a-1 abe(n — 1)
Three-way mixed (A>~B)xC B AC c a(b-1) ab-1)c-1)
Three-way mixed (A-B)xC C AB a c-1 (a=1)(c-1)
Three-way mixed (A-B)xC A, C B b a-1 a(b-1)
Three-way mixed (A-B)xC A, B C ¢ a-1 (a—1)(c-1)
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A description of the different classifications and the corresponding models can be
found in Rasch (1995) and Rasch et. al. (1996a, Chapter 1/61).

3. The algorithm and the program

The solution X of (3) is a known function g(a, 8, f1, f2) of the risk of the first kind a,
the risk of the second kind 3, and the degrees of freedom f; and f3 of the numerator
and denominator, respectively. Because both sides of (3) depend on the size of the
experiment, we have to find the minimal w that satisfies (3) for the subclass number
n or for the number b of blocks if n = 1 by iteration. We assume that o, 3, f and
0?2 (or a guess of 02) are given in advance, fs is a function of w. During the iteration
the values \; are calculated from w; by (3). The algorithm for this iteration is given
by Rasch et al. (1996b).

We know that A is monotonously decreasing with increasing fs (therefore, with
the sample size, since fs is proportional to the sample size) and often the iteration
converges.

In cases when the iteration does not converge, we use a systematic search. An
example for the t-test (analogue to the F-test for the one-way ANOVA with a = 2),
where the result can be tested by a pocket calculator, is given in Rasch et al. (1997)
and Herrendorfer et al. (1997).

4. Examples

In this chapter we demonstrate how the program! works. We present examples of
a =0.05, 8 =0.2 and d = o for the cases shown in Table 2.

Table 2. Overview of the examples

Example Number Classification and model Specification
of factors

1 2 AxB a=35

2 2 A>-B b=6

3 2 A-B a=6

4 3 AxBxC a=4,b=6,c=3
a=6,b=4,¢c=3

5 3 (A-=B)xC c=2

! Remark: The program is now commercially distributed as a part of the module
ANOVA which runs under Windows 95 (distributor: BIOMATH GmbH Rostock. Tel.
0049-381-4059610, Fax 0049-381-4059200).



122 D. Rasch and M. Wang

Ezample 1. Starting the program, we are prompted to input the following parameters

AxB - Kleuzklassifikalion

Clicking OK, we get the result:

Two-way Cross Classification AxB:

Factor A fixed, B random, testing equality of Factor A

Level of Factor A =5

Alpha = 0.05, Beta = 0.2, Variance = 1, Precision = 1

Ansver:

Levels of Factor B = 26, 12 for the least and most favorable cases respectively

Thus, we have 12 < b < 26 and the experimenter may make a choice in this

range. In the following examples we only give the output of the program and the
range.

Ezxample 2.

Two-way Nested Classification A>B:

Factor B fixed, A random, testing equality of Factor B

Level of Factor A = 8, Level of Factor B = 6,

Alpha = 0.05, Beta = 0.2, Variance = 1, Precision = 1

Answer: Number of Replication = 56, 19 for the least and most favorable cases re-
spectively

Thus, 19 < n < 56.
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Ezample 3.

Two-way Nested Classification A>B:

Factor A fixed, B random, testing equality of Factor A

Level of Factor A = 6

Alpha = 0.05, Beta = 0.2, Variance = 1, Precision = 1

Answer:

Levels of Factor B = 27, 10 for the least and most favorable cases respectively

Thus, 10 < b < 27.

Ezxample 4.

Three-way cross classification (AXBXC):

Testing effects of Factor A

Level of Factor A = 4, Level of Factor B = 6, Level of Factor C = 3
Alpha = 0.05, Beta = 0.2, Variance = 1, Precision = 1

Answver:
Number of replication = 2, 1 for the least and most favorable cases respectively
Thus, n =1 or 2.

If we like to test the effects of factor B in this example we have to rename the
factors. The factor under test must always be factor A. Repeating the calculation with
6 levels of factor A, 4 levels of factor B and factor C unchanged gives the following
output:

Three-way cross classification (AXBXC):

Testing effects of Factor A

Level of Factor A = 6, Level of Factor B = 4, Level of Factor C = 3

Alpha = 0.05, Beta = 0.2, Variance = 1, Precision = 1

Answer:

Number of replication = 3, 3 for the least and most favourable cases respectively

Thus n = 3.

Ezample 5.

Three-way mixed classification (A>B) x C:

C fixed, A, B random, testing effects of factor C

Level of Factor C = 2

Alpha = 0.05, Beta = 0.2, Variance = 1, Precision = 1

Answer:

Levels of Factor A = 17, 17 for the least and most favorable cases respectively

Thus, o = 17. The unique value follows from the fact that when a factor has
only 2 levels the least favorable and the most favorable cases are identical.
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Wyznaczanie wielko$ci doswiadczenia dla analizy wariancji w modelach
stalych i mieszanych

STRESZCZENIE

Przedstawiono algorytm i program komputerowy stuzacy do wyznaczania minimal-
nej wielkoSci doswiadczenia dla poréwnania pozioméw czynnika stalego za pomocy
analizy wariancji. Minimalna wielko§¢ jest wyznaczana na podstawie dolnego ograni-
czenia réznicy pomiedzy najwigkszym i najmniejszym z poréwnywanych efektéw, ry-
zyka zwigzanego z testem F i zalozonej, wspélnej wariancji resztowej. Rozpatruje sie
przypadek najbardziej sprzyjajacy (mini-min) oraz najbardziej niesprzyjajacy (maxi-
min). Klasyfikacja oraz wybrany model wplywaja tylko na liczbe stopni swobody
dla testu F' oraz na zwiazek pomiedzy rozmiarem eksperymentu oraz parametrem
niecentralno$ci.

SLOWA KLUCZOWE: analiza wariancji, rozmiar minimalny, parametr niecentralnoéci,
liczba podklas.



